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1. INTRODUCTION 

We consider discrete approximations to the scalar conservation law 

Let v(t) = {v,(t)} be the approximate solution, and denote by 

its total-variation at time level t. A desirable property for such an 

approximate solution to share with the exact one, is that its total variation 

should decrease in time Difference scheme which give rise to such total- 

variation diminishing solutions--called TVD schemes after Harten [3]--is the 

subject of this paper. 

1 

TVD schemes prevent spurious oscillations in their solutions, and unlike 

monotone schemes, they can still allow for high-accuracy in most of the 

computational domain. Consequently, the TVD schemes can offer a substantial 

gain in computational efficiency as indeed was verified in a wide range of 

applications, e.g. [ll] and the references therein. 

Sufficient TVD criteria for explicit and implicit fully-discrete schemes 

were given by Harten in [ 3 ] ,  [4], and analogously for semi-discrete schemes in 

[131, [7]. Necessity for three-point schemes was proved in 115, Lemma 2.21 

and a general TVD characterization for multi-point stencils was provided in 

'We use the notion of order in its weak sense; thus, decrease means 
nonincrease, positive refers t o  nonnegative, etc. 
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[51, [9]. Roughly speaking ,  t h e s e  c r i t e r i a  assert t h a t  a g iven  scheme has  t h e  

TVD p rope r ty ,  provided i t  can be w r i t t e n  i n  an  a p p r o p r i a t e  incrementa l  form 

which meets a c e r t a i n  p o s i t i v i t y  c o n d i t i o n ,  augmented wi th  a CFL r e s t r i c t i o n  

i n  t h e  e x p l i c i t  case. A d i f f e r e n c e  approximation of (1.1) can be e q u a l l y  

r ep resen ted  by a v a r i e t y  of d i f f e r e n t  incrementa l  forms, y e t  t h e  p o s i t i v i t y  

c o n d i t i o n  mentioned above is  not i n v a r i a n t  under such d i f f e r e n t  

r e p r e s e n t a t i o n s .  Hence, t h e  key s t e p  i n  seeking  t h e  TVD p rope r ty  accord ing  t o  

t h e  above c r i t e r i a ,  r e q u i r e s  u s  t o  f i n d  t h e  c o r r e c t  incrementa l  form so t h a t  

t h i s  p o s i t i v i t y  c o n d i t i o n  could be m e t ,  e.g. [ l o ,  P a r t  I ] .  

I n  t h i s  pape r ,  w e  provide a l t e r n a t i v e  more convenient TVD 

c h a r a c t e r i z a t i o n s ,  i n  t h e  sense  t h a t  they are uniformly v a l i d  f o r  t h e  v a r i o u s  

d i f f e r e n t  incremental  r e p r e s e n t a t i o n s  of a g iven  scheme. To t h i s  end, w e  

f i r s t  no te  t h a t  t he  t o t a l  v a r i a t i o n  of a g r i d  f u n c t i o n  depends s o l e l y  on i ts  

extrema va lues ,  s e e  (1.2). It is t h e r e € o r e  p l a u s i b l e  t o  assert t h a t  i n  o r d e r  

f o r  a d i f f e r e n c e  scheme t o  s h a r e  t h e  TVD p rope r ty ,  i ts inc remen ta l  

c o e f f i c i e n t s  should be c o n t r o l l e d  only a t  c r i t i ca l  neighborhoods where t h e  

approximate g r id  s o l u t i o n  a t t a i n s  extrema va lues .  Indeed, our  s u f f i c i e n t  TVD 

c o n d i t i o n s  have the  f l a v o r  of t h i s  a s s e r t i o n ,  namely, they  p l ace  a p o s i t i v i t y  

r e s t r i c t i o n  only on those  incrementa l  c o e f f i c i e n t s  which are a s s o c i a t e d  wi th  

such  c r i t i ca l  neighborhoods. Moreover, w e  are a l s o  a b l e  t o  expres s  t h e s e  

l o c a l  TVD condi t ions  s o l e l y  i n  terms of t h e  numerical f l u x e s  of t h e  non l inea r  

schemes , r a t h e r  t han  invoking any of t h e i r  s p e c i a l  incrementa l  

decompositionso P u t t i n g  i t  i n  d i f f e r e n t  words, w e  show t h a t  t h e  TVD p rope r ty  

ho lds  f o r  d i f f e r e n c e  schemes whose numerical v i s c o s i t y  correspond t o  upwind 

d i f f e r e n c i n g  a t  extrema va lues  but can be a r b i t r a r y  o therwise .  Thus, i n  

c o n t r a s t  t o  t h e  more r e s t r i c t i v e  g l o b a l  p o s i t i v i t y  cond i t ions  mentioned 
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earlier, our TVD criteria are localized to extrema values, and consequently 

can be equally applied to different incremental representations. 

We begin by discussing the semi-discrete case in Section 2. Fully- 

discrete implicit and explicit schemes are treated in Section 3. To utilize 

our TVD criteria in the latter cases, the extrema values at the next time- 

level are to be known in advance. This necessitates additional ingredients in 

the fully-discrete cases, whose purpose is to provide us with such a priori 

control on the behavior of extrema at the next time level. In particular, 

standard recipes of constructing TVD schemes which make use of anti-diffusive 

correctors and limiters, are all shown to naturally follow in light of our 

above arguments. 

2. SEMI-DISCRETE SCHEMES 

We consider semi-discrete schemes in the conservative form 

d 1 
dt v -v (t) = - -  [hv+ 1/2 - hv- 1/21 ’ 

AxV 

hv+ 1/2 - x  1 being the variable meshsize and - 1  
Axv = (xv+l v-1 with 

denotes the Lipschitz continuous numerical flux which is consistent with the 

differential one 

h v+ = h(vv-p+l 9 ,v ), h(u,u,...u) = f(u). 
V+P 

To study the TVD property of these schemes, we forward difference (2*1), 
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- 1 - 1 - 
lhv+3/2 hv+ l/2] + [hv+ l/2 hv- 1/21 7 

- - -  d 
d t  V +  l/2  AX^+^ (2.3) - A v  

The only c o n t r i b u t i o n s  t o  t h e  sum on t h e  r i g h t  came from extrema v a l u e s  

and t h e  requirement of t h e s e  c o n t r i b u t i o n s  t o  be where S 

n e g a t i v e  y i e l d s  

v+ 1/2 * sv- I/$ 

Lemma 2.1: The semi-discrete  scheme (2.1) is TVD,  i f  we have 

(2.5a) 

(2.5b) 

h > h  a t  maxima va lues  vv ( t )  , 
v+ 1/2- v- 1/2 

h a t  minima v a l u e s  v v ( t ) .  v+ 1/2 hv- '/2 

I n  o t h e r  words, Lemma 2.1 r e q u i r e s  maxima va lues  t o  decrease  i n  t i m e  and 

minima values  t o  i n c r e a s e  i n  t i m e .  Moreover, i f  t h e  d i s t a n c e  between such 

extrema values  exceeds t h e  s t e n c i l  width of 2p + 1 c e l l s ,  then  t h e  

corresponding terms i n s i d e  t h e  summation on t h e  r i g h t  of (2.4) are independent 

and consequently (2.5) is  a l s o  necessary f o r  TVD i n  t h i s  case. 

We now tu rn  t o  d i s c u s s  t h e  r e l a t i o n  between t h e  TVD cr i ter ia  i n  Lemma 2.1 

and a d i f f e r e n t  kind of TVD c o n d i t i o n s  due t o  Harten 131, [41 and Osher [91; 

see a l s o  [51,  1131. I n  o r d e r  t o  implement t h e  l a t t e r ,  one should start  w i t h  

n o n l i n e a r  semi-discrete  schemes which assume t h e  incremental  form 
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v+ v v + p  - v p .  Av 

The nonlinearity is reflected here by the possible dependence of the 

Forward differencing of (2.6) f 
v+p coefficients 1/2 On v-p+l '. s V  

gives 

Multiplying (2.7) by s v+1/2 and summing by parts we find 

2 and using the fact that2 = s  where s v+ 1/2 E 1, we end 

up with 

(1 - s V +  l/2 'v+3/2 IC- V+ * I Avv+ I * 

The quantities inside the two parenthesis on the right are positive. Hence, 

the summation on the right is positive and consequently the scheme ( 2 . 6 )  is 

2The signum function at zero is defined to be *l, so that its square = 1. 
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TVD, provided the incremental coefficients, Cv+ are positive 

(2 .10)  
- > 0.  v+ 1/2- 

C + 
cv+ - O, 

The positivity requirement (2.10) is the usual condition which characterizes 

the TVD schemes (2 .6 ) ,  e.g., [ 3 ] ,  [51 ,  171,  [ 1 3 ] .  Given a semi-discrete 

conservative approximation of ( 1  . 1) ,  it can be equally represented in a 

variety of different incremental forms. The positivity condition is  not 

invariant, however, under such different representations. Thus, a key step in 

seeking the TVD property for a given scheme, requires us to find the correct 

incremental form so that the positivity condition (2.10) could be met, e.g. 

[ 101 

Lemma 2.1 provides us with a local TVD criterion which makes no reference 

to the incremental representation of the scheme (2.1).  How does this compare 

with the global positivity condition placed on the incremental coefficients in 

(2.10)? a second glance at (2.9) shows that whenever the grid values v 

and v are located in a monotone profile, i.e., when both 

vanish, then the corresponding term 1 - s v+ l/2 'v+3/2 1 - s  

in the summation on the right of (2.9) also vanishes independently of the 

incremental coefficients Cf This tells us, therefore, that the 

positivity condition (2.10) can be localized to extrema values, bearing a 

close similarity to the local nature of the TVD criterion (2.5).  To be more 

precise, let us abbreviate 

V 

v +I 

v - 9.2 sv+ 112 and 

v+ 112' 

(2.11) 
v- '/2 sv+ '/2 ; 

= 1 - s  
XV 



then ( 2 . 9 )  reads 

( 2 . 1 2 )  

and we are led to the following. 

Lemma 2.2: The semi-discrete scheme ( 2 . 6 )  is TVD, if we have 

( 2 . 1 3 )  
+ - 

xvcv+ '/2 + XV+lCV+ 1/2 - > 0.  

For smooth grid functions, we have almost everywhere (i.e., with the exception 

of critical neighborhoods), hence the TVD condition ( 2 . 1 3 )  is 

automatically fulfilled in these cases. 

xv - - x , + ~  = 0 ,  

Once the positivity condition (2 .10)  was localized to those incremental 

coefficients associated with extrema values ( 2 . 1 3 ) ,  we can go one step further 

and complete the comparison with Lemma 2 . 1 ,  dealing with the numerical fluxes 

instead. 

To this end, the scheme ( 2 . 1 )  is rewritten in its canonical incremental 

representation ( 2 . 6 )  where, see [ 1 5 ,  Section 21 

Applying Lemma 2 .2  to these coefficients, then ( 2 . 1 3 )  reads 
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o r ,  e q u i v a l e n t l y  , 

Hence, i n  case of an i s o l a t e d  extrema va lue  where = 0, t h e  

i n e q u a l i t y  (2.15) is f u l f i l l e d  i f  and only i f  

In f a c t ,  (2.16) covers  t h e  g e n e r a l  case of extrema va lues  whether 

i s  a l s o  an  vv+l - - = 2,  then ,  s i n c e  i s o l a t e d  o r  not.  For,  i f  

extrema va lue ,  w e  have i n  view of (2.16b) 

XV xv+1 

and a weighted average  of (2.16a), (2.17) y i e l d s  (2.15). 

We summarize t h i s  by s t a t i n g  

Corollary 2.3: The semi-d iscre te  scheme (2.1) is  TVD, i f  w e  have 

(2.18a) 

(2.18b) 

h 1 i f ( v v )  > h a t  maxima va lues  vv ( t )  , 
v+ /2- - v- ‘/2 

h < f ( v v )  < h a t  minima va lues  vv ( t )  . v+ 1/2- - v- 1/2 
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The TVD c o n d i t i o n  (2.181, which was de r ived  on t h e  b a s i s  of t h e  

inc remen ta l  decomposition (2.141, i s  somewhat more s t r i n g e n t  than  our TVD 

c r i t e r i o n  (2.5) i n  t h a t  t h e  former requires f ( v v )  t o  s e p a r a t e  between t h e  

numerical  f l u x e s  on both  s i d e s  of extrema va lues .  Incremental  decompositions 

of (2.1) o t h e r  than  (2.14), may lead  t o  s l i g h t l y  d i f f e r e n t  l o c a l  TVD 

c o n d i t i o n s ;  y e t ,  they a l l  s h a r e  a similar k ind  of a s e p a r a t i o n  requirement a t  

extrema va lues ,  which i n  view of t h e  cons i s t ency  r e l a t i o n  (2.2) is a g e n e r i c  

p rope r ty  of t h e  TVD numerical  f l u x e s .  

Lemma 2.1 and Coro l l a ry  2.3 enable one t o  v e r i f y  t h e  TVD p rope r ty  of 

f i r s t  as w e l l  as h ighe r  o r d e r  accu ra t e  semi-d iscre te  schemes, without making 

r e f e r e n c e  t o  any of t h e i r  special incrementa l  r e p r e s e n t a t i o n s .  To demonstrate 

t h i s  p o i n t ,  we t u r n  t o  

Example 2.4: Consider t h e  class of gene ra l i zed  MUSCL schemes [ 8 ] ,  where 

(2.19) Ax - - d  ). E Ax = h ( v  + -  v+  ‘/2 v 2 d v *  vv+l 2 v+l h 

Here, Ax E Ax is  t h e  uniform mesh spac ing ,  h E ( * , * )  s t a n d s  f o r  any 
V 

E-flux, s a t i s f y i n g  

f o r  a l l  w between w and w and % is  an approximate d e r i v a t i v e  a t  

x which gua ran tee  second-order accuracy i f  chosen so  t h a t  

V v+l ’ 

V 
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In [8, Lemma 2.31, Osher introduces a special incremental decomposition 

of these schemes in order to show that they meet the positivity condit€on 

(2.10) and hence share the TVD property, provided for each v we have 

(2.22) Ax 
. dv < 1. O <  - - AV 

Vf 1/2 

Note that in the particular case of v being an extrema value, (2.22) 

must vanish and, consequently, that accuracy degenerates to 

V 

implies that dv 

first-order at these points. 

In contrast to the special positivity arguments made above, Lemma 2.1 

Localized at extrema 

so that in view of the E-condition (2.20), TVD is 

suggests a straightforward TVD derivation in this case. 

values, we set 

guaranteed if in addition we have 

dv = 0 ,  

1 Ax (2.23a) Sgn(vv+l - vu) = Sgn(vv+l - vv - 2 dv+l 

(2.23b) 

i.e., if the neighboring discrete derivatives of extrema 

(2.24) 1 Ax 1 Ax 
- I  2 Avv- 1/2 dVJ 5. 1, - I  Avv+ I/* dv+l 

values satisfy 

I < 1. - 

could be 
dV * One possible choice for such discrete derivatives, 

S - V 
Ax v-1/2+ S"+1/2  

(2.25) dv - - *  



The above TVD analysis relies on the conservative form of nonlinear 

difference schemes. We turn now to discuss another representation which is 

found useful to utilize TVD criteria for such schemes, making use of their 

viscosity form. To this end, recall the definition of the incremental 

coefficients, C:+ iI2 in (2.14). The identity 

shows that between these two incremental coefficients, C* v+ lI2 , there is only 

one degree of freedom, which could be expressed in terms of Qv+ 1/2 ’ 

(2.27) 
- 

= Ax C + Ax C+ 
Qv+ 1/2 v+l  v+ 1/2 v v+1/2‘ 

Eliminating C* from (2.26) and (2.27) we find v+ 1/2 

Our scheme (2.1) is then recast into the viscosity form [161 

1 [f(vv+l> - f(v 11 + d 
dt v (2.29) - v (t) = - v-1 

V 

Av +-  1 
2A xv 

thus revealing the role Q plays as the numerical viscosity coefficient. 

given in (2.281, then Lemma 2.2 tells us Applying (2.13) to Cv+ 1/2 
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Lemma 2.5: The scheme (2.29) is TVD, i f  i t s  v i s c o s i t y  s a t i s f i e s  

Afv+ l/ 

v+ 1/2 
Ax 1 - 0  (2.30) ( X ~ A X ~ + ~  + Xv+lAXv) Qv+ 1/2? (XvAxv+l 'V+1 V Av - 

I n  t h e  case of e q u a l l y  spaced meshpoints,  Ax E Ax, w e  conclude t h a t  t h e  

scheme 

V 

- v  d ( t )  = - -  1 [f(VV+Q - f(vv-,)1 + d t  v 2AX (2.31) 

i s  TVD, provided the  fo l lowing  s i m p l e  i n e q u a l i t y  is  f u l f i l l e d  a t  neighborhood 

of extrema values 

(2.32) 

Example 2.6: Consider a f i r s t - o r d e r  a c c u r a t e  TVD scheme of t h e  form 

d 1 
d t  v (2.33) - v ( t )  = - - lhv+ 1/2 - hv-.l / j  = 

A "V 

I n  o r d e r  t o  convert i t  i n t o  a second-order a c c u r a t e  TVD scheme, we add t o  i t  

an a n t i - d i f  fu s ive  conse rva t ive  d i f f e r e n c e  
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I 

The numerical  f l u x  c o r r e c t i o n ,  % v+1,2 

C o r o l l a r y  4.9 1 

i s  chosen t o  be of t h e  form [ l o ,  

(2.34b) 

where t h e  so c a l l e d  modified f l u x  c o r r e c t i o n ,  should s a t i s f y  
V ’  

= s  a t  nonext rema va lues  vv ( t  1, 
(i) sgn(i,,) = s v- 1/2 v+ 1/2’ 

N 

(ii) gv = 0 ,  a t  extrema va lues  vv (t 1. 

Now, i f  v ( t )  o r  ~ ~ + ~ ( t )  is an extrema va lue ,  then  by (ii) w e  have 

vanishes  i n  both t h a t  5 = 0 o r  = 0,  and consequently 

cases s i n c e  by (i) 

V 
N N N 

hv+ 1/2 

N = %  = 0 at extrema va lues  v v ( t )  and i n  view of Lemma Hence, 

2.1, t h e  modified scheme (2.34) inhe ren t s  t h e  TVD p rope r ty  of (2.33). Next w e  

hv+ ‘/2 v- 1/2 

observe  t h a t  t h e  m o d i f i c a t i o n  of (2.33) i n t o  (2.34) has t h e  ne t  e f f e c t  of 

i n t o  Qv+ 1/2) dec reas ing  t h e  o r i g i n a l  f i r s t - o r d e r  v i s c o s i t y ,  
N 

- 2 .!!!?%- ; f o r  second order  accuracy [17, Lemma 4.41, t h e  l a t te r  
Avv+ 1/2 Qv+ 1/2 

should  be a L i p s c h i t z  cont inuous  g r i d  f u n c t i o n  of o r d e r  O( lAv 1 ), i.e., 
v+ /A 
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N 

as gv ’ To t h i s  end, one could choose t h e  modified f l u x  c o r r e c t i o n ,  

I n  t h i s  way, second-order accuracy i s  achieved away from extrema v a l u e s ,  

which modulo n o t i n g  t h a t  t a k e s  t h e r e  t h e  va lue  

1 q u a d r a t i c  e r r o r  terms are equa l  - 

N N 

gv Or g,+1 v+  1/2 

2 Qv+ 1/iVV+ I/; 

Example 2.7: A s i m p l e  recipe sugges ted  by (2.32), f o r  c o n s t r u c t i n g  a TVD 

scheme wi th  second-order accuracy away from extrema va lues ,  i s  t o  set t h e  

numerical  v i s c o s i t y  Q t o  be 

(2.35) 

The r e s u l t i n g  scheme (2.31), (2.35), amounts t o  t h e  u s u a l  second-order c e n t r a l  

d i f f e r e n c i n g  augmented wi th  f i r s t - o r d e r  conse rva t ive  connec t ion  a t  extrema 

va lues  

The last two examples d e a l t  w i t h  TVD schemes which are second-order 

a c c u r a t e  away from extrema va lues .  I n  our f i n a l  example f o r  t h i s  s e c t i o n ,  we 

demonstrate a s imple  r e c i p e  of e n f o r c i n g  t h e  TVD p rope r ty  on a r b i t r a r y  

c o n s e r v a t i v e  schemes whi le  main ta in ing  t h e i r  high accuracy away from extrema 

v a l u e s ,  see a l s o  [ 91. 
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Example 2.8: L e t  hv+ 1/2 be any h igh ly  a c c u r a t e  c o n s i s t e n t  f l u x .  For 

example, t h e  2p-th o r d e r  a c c u r a t e  c e n t r a l  d i f f e r e n c i n g  are i d e n t i f i e d  wi th  t h e  

numerical  f l u x ,  e.g., [18]  

where 

- 1 and d12 - - 5 2 , d22 = - -  1 
12 d l l  - 7 

f o r  second and f o u r t h  o r d e r  accuracy ,  o r  

2n k 

Mx ’ 2N+ 1 
A X  E - - ( -1)  A X  

2sin(-) dkN - 
2 

f o r  spectral accuracy occupying pe r iod ic  s t e n c i l s  of 2N+1 meshpoints. 

Next, we denote by 

1 (2 .37 )  

t h e  u s u a l  f i r s t - o r d e r  a c c u r a t e  upwind numerical  f l u x ,  and l e t  u s  cons ide r  t he  

semi -d i sc re t e  conse rva t ive  scheme 

(2.38a) - H  d 1 
d t  v Axv lHv+ l/2 v- 1/21 * - v  ( t )  = - -  
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(2.38b) 

Away from extrema va lues  I s v I  = IsVkil = 1, and t h e  o r i g i n a l  high accuracy 

of H = h 1 is r e t a i n e d  i n  those  reg ions .  A t  extrema v a l u e s  
v+ 1/2 v+ /2 v, 

U s a t i s f y i n g  hv+ 1/2 co inc ides  with the  upwind f l u x  %+ 1/2 s = 0, hence 
V 

a t  maxima va lues ,  and t h e  i n v e r s e  i n e q u a l i t y  

a t  minima values .  Consequently,  t he  scheme (2.38) is TVD by Lemma 2.1. 

i n  (2.38b) is i n  g e n e r a l  not  

smooth, except  f o r  t h e  second-order case, p = 1, where t h e  scheme (2.38) 

co inc ides  with the  previous example (2.36) and i t s  g l o b a l  second o r d e r  

accuracy is maintained, e.g., [ 3 ] ,  [ 4 ] ,  [ 9 ] .  The h igh ly  a c c u r a t e  s t e n c i l s ,  

p > 1, r equ i r e  f u r t h e r  numerical  and a n a l y t i c a l  i n v e s t i g a t i o n  with regard  t o  

t h e i r  accumulated accuracy i n  extrema f r e e  reg ions .  

Hv+ 1/2 We note  t h a t  t h e  numerical  f l u x  

Remarks: ( i )  It i s  i n s t r u c t i v e  t o  see why t h e  necessary and s u f f i c i e n t  

conse rva t ive  TVD c r i t e r i o n  i n  Lemma 2.1 i s  reduced t o  the  s u f f i c i e n t  

i nc remen ta l  TVD cond i t ions  der ived  from (2.12). To t h i s  end, l e t  us  i n s e r t  

t h e  incremental  c o e f f i c i e n t s  (2.14) i n t o  (2.12) o b t a i n i n g  
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d - TV[v( t ) ]  = d t  

t 

-b = - I  [ - 0  

V A "V Ax v+l Av v+  1/2 

Now, Lemma 2.2 and Coro l l a ry  2.3 were der ived  by r e q u i r i n g  a termwise 

p o s i t i v i t y  of t h e  b r a c k e t s  i n s i d e  t h e  summation on t h e  r i g h t ,  see (2.15). 

I n s t e a d ,  i f  w e  f i r s t  r e index  t h i s  summation w r i t i n g  i t  as 

we t hen  end up wi th  t h e  necessary  and s u f f i c i e n t  TVD c r i t e r i o n  (2.5). This  

makes apparent  t h e  d i f f e r e n c e  between the  two d e r i v a t i o n s  due t o  t h e  

n o n l i n e a r i t y  of t he  schemes. 

( i i )  The i n e q u a l i t y  (2.32) shows t h a t  t h e  scheme (2.31) has t h e  TVD 

p r o p e r t y  wi th  an a r b i t r a r y  amount of v i s c o s i t y ,  except  f o r  i n t e r v a l s  

c o n t a i n i n g  i s o l a t e d  extrema va lues  where w e  need a t  least  

(2.39) 

The q u a n t i t y  on t h e  r i g h t  corresponds t o  upwind d i f f e r e n c i n g ,  and i s  

r e s p o n s i b l e  f o r  t h e  f a m i l i a r  f i r s t - o r d e r  'cl ipping'  phenomenon a t  t h e  extrema 

of TVD schemes, e.g., [ 3 ] ,  [ 7 1 ,  [ l o ] .  

( i i i )  A classical  argument which involves  Helly's theorem, L i p s c h i t z  

c o n t i n u i t y  of and t h e  d i agona l  process  i m p l i e s  t h e  convergence 

of TVD schemes t o  a weak s o l u t i o n  of (1.11, e.g., [ 4 ] .  In p a r t i c u l a r ,  t h i s  i s  

t r u e  f o r  c e n t r a l  d i f f e r e n c i n g ,  Qv+ I/* = 0 ,  augmented wi th  extrema upwind 

] V < O  , t )  [ _  1 L 
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differencing (2.36). However, the limit solution may still be a physically 

irrelevant one, e.g., [81. To avoid the latter, say in the convex case 

where f"(u) > 0, it is enough to have viscosity at the amount which exceeds 

Thus, central differencing will do along the monotone decreasing profiles, and 

additional amount of viscosity is required along the 

monotone increasing ones. 

0 ( IAvv+ 1/2 I 1 

3. FULLY-DISCRETE SCHKMES 

We consider two-level fully-discrete explicit or implicit schemes in the 

conservative form 

- x ) and At are the variable meshsize and time step Here, Axv t 

is the consistent Lipschitz continuous such that x z 

numerical f l u x  which depend on 2p+l neighboring gridvalues from both time 

levels, t and t + At. 

1 
2 (",+1 v-1 

$+ 1/2 and At 
v E '  

V 

To study the TVD properties of these schemes, we forward difference (3.1) 



s (t + At) sgn[Av (t + At)] and sum by parts, 
v+ 1/2 v+ 92 

mu 1 t i pl y 

obtaining 

by 

i 

(3.3) TV[v(t + At)] = 1 s (t +At) Av v+ 1/2 v+ 1 / p  + V 

The first summation on the right does not exceed TV[v(t)], and the requirement 

from the second one to be negative yields 

Le- 3.1: The fully-discrete scheme (3.1) is TVD, if we have 

(3.4a) h > h  at maxima values vv (t + At) , v+ 92- v- 92 

at minima values v (t + At). 
V 

h < h  v+ 92- v- '/2 (3.4b) 

Lemma 3.1 is a manifestation of our previous assertion, namely, that the TVD 

properties of conservative schemes are determined solely by the behavior of 

their numerical fluxes at extrema values. Yet, unlike the semi-discrete case 

we had before, here there is the additional difficulty of tracing these 

unknown extrema values at the next time level, t + At. 

A similar situation occurs with the incremental representations of fully- 

discrete nonlinear schemes. Consider for example two-level explicit schemes 

in the incremental form 
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( t ) , . . . , ~  ( t ) ) .  To s tudy  t h e  TVD p r o p e r t i e s  of 

and 
V +P 

with 

such  schemes, w e  forward d i f f e r e n c e  (3.5), mul t ip ly  by 

sum by par ts ,  o b t a i n i n g  

c:+1/21 C* v+1/2 (v v-p+l 

sv+1/2't + At) 

( 3 . 6 )  TV [ v ( t  + A t ) ]  = 1 sV+l/$t + A t )  AvV+l,$t) + 
V 

Since  t h e  f i r s t  summation on t h e  r i g h t  does not  exceed TV[v, ( t )  1, we a r r i v e  a t  

t h e  fo l lowing  s u f f i c i e n t  TVD condi t ion .  

Le- 3.2: The e x p l i c i t  scheme (3.5) is  TVD, i f  we have 

Applying the last  r e s u l t  t o  t h e  incrementa l  c o e f f i c i e n t s ,  compare (2.281, 

w e  f i n d  t h a t  f o r  equa l ly  spaced e x p l i c i t  schemes g iven  i n  t h e  v i s c o s i t y  form 
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1 Av Qv- I/,”.,+ 1/21 ’ xv f A ,  7 [Qv+ 1/2 v+ + 

the following TVD characterization holds. 

Lemma 3.3: The exDlicit scheme (3.9) is TVD. if its viscositv 

coefficient satisfies 

r 

and the following CFL-like condition is fulfilled 

(3. lob) 1/2’ lav+ 1,j I 1. 

Thus, we conclude that the “VD property of either scheme, (3.5) or (3.9), is 

determined by the behavior of their incremental and viscosity coefficients at 

extrema values, but as before, the di€ficulty lies in obtaining a priori 

knowledge about these values at time level t + At. 

o < x  < 2  suggests one way of avoiding this - - The inequality 

difficulty, namely, to replace (3.7) by the simpler positivity condition 

c 

together with a CFL restriction 
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(3.11b) + 
cv+ 1/2 + c;+ 1/2 L 

Yet, the simplicity of this sufficient TVD condition, which is originally due 

to Harten [3], [5], [ 9 ] ,  [15], is obtained at the expense of its global 

dependence on the special incremental form being used. 

Another attractive approach to circumvent the difficulty of tracing the 

next-time level extrema values is to view the scheme (3.1) just as a first 

predictor step. Then, the resulting spatial variation at time-level t + At 

can be made the basis for an augmenting corrector step which will preserve the 

monotonicity of the predictor step and which will comply with (3.4). Such 

argument was used in connection with the FCT algorithm [l] and the ACM method 

[2]. In the following example, borrowed from [ l o ,  Corollary 4.91, we work out 

another corrective-type recipe of this kind, which highlights the essential 

features distinguishing the fully-discrete explicit case from the semi- 

discrete one. 

Example 3.4: Consider an explicit first-order accurate TVD scheme of the 

form 

The star indicates the predicted values at time level t + At. In order to 

convert this scheme into a second-value accurate TVD one, these values are 

corrected to second order accuracy, by augmenting an anti-diffusive corrector 



s t e p  of t h e  form 

* 
(3 .12b) v v ( t  + A t )  = V V ( t  + At) - [F;y+1/2- Sv+l 

The numerical  f l u x  c o r r e c t i o n ,  % is chosen t o  be, compare Example 2 . 6 ,  
v+ 92) 

* N * * - 1 -  - g v l l ,  sv+1/2= sgn[Av ( t  + A t ) ] ,  ( 3 . 1 2 ~ )  xv+ 1/2- T [gv + %+l - s v + l / p v + l  v+ 1/2 

N 

where g\, should s a t i s f y  the  two p r o p e r t i e s  

v:(t + A t )  
* * 

(i> sgn(iiv) = sv- lI2= sv+ lI2, a t  nonextrema va lues  

* 
(ii) iv = 0, a t  extrema va lues  v v ( t  + A t ) .  

I n  a d d i t i o n ,  we r e q u i r e  t h a t  t h e  p red ic t ed  monotonicity should be p re se rved ,  

i.e., 

* 
(iii) s ( t  + A t )  = s ( t  + A t ) ,  

v+ 1/2 v+  1/2 

s o  t h a t  by t h e  u s u a l  summation by p a r t s  we have 

* * 
( t  + At)Avv+ ( t  + At) + 

l/2 l/2 
TV[v(t + At) ]  = 1 sv+ 

V 

* N N * 
+ 1 [ ~ ~ + l , $ t  + A t )  - S v- '/2 ( t  + A t ) ]  r h , + ~ / ~ -  hV-1/21* 

V 
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S ince  the  f i r s t  summation on t h e  r i g h t  e q u a l s  

whi le  t h e  second is  nonnegat ive ,  c o n s u l t  Example 2.6, t h e  scheme (3.12) i s  

TVD. Next, i t s  second o r d e r  accuracy i s  achieved i f  

TV[v*(t + A t ) ]  - < T V [ v ( t ) ] ,  

To s a t i s f y  t h i s  (away from extrema v a l u e s ) ,  and t h e  f i rs t  two p r o p e r t i e s  

l i s t e d  above, w e  choose 

* 

where t h e  L ipsch i t z  cont inuous  form, B [ * , * ] ,  is y e t  t o  be determined s o  t h a t  

t h e  t h i r d  proper ty  of monotonicity p re se rv ing  w i l l  be s a t i s f i e d .  To t h i s  end ,  

w e  no te  t h a t  

and t h e r e f o r e ,  s i n c e  and % must agree i n  s i g n ,  
v- If2 

* 
Hence, t h e  sum on t h e  r i g h t  does not exceed l A g +  1 / p  + A t )  I and 

consequently t h e  monotonicity p re se rv ing  p rope r ty  ho lds ,  provided B[*,*] 

i s  chosen as the b i l i n e a r  l imiter  form 

The last  example demonstrates t h e  t y p i c a l  s i t u a t i o n  wi th  e x p l i c i t  

schemes, where t h e  TVD p rope r ty  n e c e s s i t a t e s  one k ind  o r  ano the r  of a Minmod 
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l imi te r  i n  o r d e r  t o  prevent  new extrema va lues  o t h e r  than  those  which 

propagate  from t i m e  l e v e l  t. 

An i m p l i c i t  ve r s ion  of t he  above c o r r e c t i v e  procedure is given i n  

Example 3.5: Consider an i m p l i c i t  f i r s t  o r d e r  a c c u r a t e  TVD scheme of t h e  

form 

1 * * + -  2 [Qv+ I/,”.,+ 1/2 - Qv- l/;vv- 1/2 I = v v ( t ) *  

We augment i t  wi th  an a n t i d i f f u s i v e  f u l l y - i m p l i c i t  c o r r e c t o r  s t e p  of t h e  form 

(3.13b) 

where 

( 3 . 1 3 ~ )  

* 
v V ( t  + A t )  + [xv+ - ] 5: v ( t  + A t ) ,  

1/2 v- ’/2 v 

Then (3.13b) s e r v e s  as a second-order a c c u r a t e  so lvab le  c o r r e c t i o n ,  i f  w e  set 

The r e s u l t i n g  scheme (3.13) is TVD under t h e  o r i g i n a l  ( p o s s i b l y  un l imi t ed )  CFL 

c o r d i t i o n .  Indeed,  w e  have 
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* 
TV[v(t + At)]  = 1 s ( t  + At)AvV+$t + At) + 

v +  92  V 

t h e  f i r s t  summation on t h e  r i g h t  does not exceed 

wh i l e  t h e  second vanishes  s i n c e  

TV[v*(t + A t ) ]  - < TV[v( t ) ] ,  

% do a t  extrema v a l u e s  where 
Vf 1/2 

s (t  + A t )  f sv- 1/p + A t ) *  
v +  1/2 

Other r ec ipes  f o r  c o n s t r u c t i n g  i m p l i c i t  TVD schemes which are second- 

o r d e r  accu ra t e  away from extrema va lues ,  are sugges ted  by t h e  fo l lowing  

analogue of Lemma 3.3. 

Lemma 3.6: The i m p l i c i t  scheme g iven  i n  t h e  v i s c o s i t y  form 

(3 .14)  v v ( t  + A t )  + x [ f ( v v + l ( t  + A t ) )  - f ( v v - l ( t  + A t ) ) ]  + 

(t  + A t ) ]  = v v ( t )  Qv - 1/; vv - '/2 
1 - -  

is TVD, i f  we have 

(3.15) [Xv(t + A t )  + ~ , + ~ ( t  + At)lQv+1/2L 

[x ( t  + A t )  - xv+l ( t  + At)]-Aav+ 1/2(t + At) .  
V 

We omit t h e  proof and t u r n  t o  our f i n a l  
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Example 3.7: The viscosity of the second-order accurate implicit Lax- 

Wendroff scheme is modified at extrema values, by setting 

where the quantities on the right are evaluated at time level t + At. The 

resulting’scheme ( 3 . 1 4 ) ,  ( 3 . 1 6 )  can be easily checked to satisfy ( 3 . 1 5 )  and 

hence is TVD. However, the linearized implicit LW scheme is unconditionally 

unstable -- the amplification factors of its nonconstant modes, they all lie 

outside the unit disc [191 .  Consequently, the TVD property of ( 3 . 1 6 )  is 

achieved by switching to upwind differencing at the extrema of these unstable 

oscillatory modes, at the expense of lowering the effective overall accuracy. 

Remarks: We note that the TVD characterization in Lemma 3 .1  does not 

assume the CFL condition; it enters, indirectly, through the requirement of 

controlling extrema values at the next time-level. Substitution of the 

canonical incremental decomposition (2 .14)  into (3.7) reveals that the same is 

true with respect to the TVD conditions in Lemma 3 . 2  and 3 . 3 ,  where the CFL 

limitation is implicitly contained already in (3.7a) and (3.10a). 
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